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ABSTRACT

Current state-of-the-art models based on Long-Short
Term Memory (LSTM) networks have been extensively used
in ASR to improve performance. However, using LSTMs
under a streaming setup is not straightforward due to real-
time constraints. In this paper we present a novel streaming
decoder that includes a bidirectional LSTM acoustic model as
well as an unidirectional LSTM language model to perform
the decoding efficiently while keeping the performance com-
parable to that of an off-line setup. We perform a one-pass
decoding using a sliding window scheme for a bidirectional
LSTM acoustic model and an LSTM language model. This
has been implemented and assessed under a pure streaming
setup, and deployed into our production systems. We report
WER and latency figures for the well-known LibriSpeech and
TED-LIUM tasks, obtaining competitive WER results with
low-latency responses.

Index Terms— automatic speech recognition, streaming,
decoding, acoustic modeling, language modeling

1. INTRODUCTION

On-line or streaming automatic speech recognition (ASR)
poses additional challenges to the off-line setup when state-
of-the-art neural-based models are involved. The main prac-
tical challenge is that speech recognition must be performed
under real-time constraints as the audio stream becomes
available. This implies that the complete audio stream is not
fully available when decoding is performed up to a certain
point in time. This constraint, combined with the essential
requirement of low latencies, is especially demanding when
state-of-the-art, neural-based acoustic and language models
are used.

On the one hand, acoustic modeling based on Bidirec-
tional Long-Short Term Memory (BLSTM) networks has
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shown to be the current state-of-the-art in off-line ASR sys-
tems [1]. However, BLSTM network training requires to
consider some future (right) context with respect to the cur-
rent frame to compute its acoustic score. This means that the
output of the ASR system must be delayed up to the point
in which enough frames from the future have become avail-
able for decoding. In this sense, to facilitate streaming ASR,
an in-depth study of using a sliding window that captures
the left (past) and right (future) context with respect to the
current frame was carried out in [2]. In brief, it was shown
that BLSTM-based models outperform deep neural network
(DNN) approaches in the streaming setup. This work was
extended in [3] with a definition of a theoretical framework
for the sliding window approach and a weighting scheme for
overlapping frames.

On the other hand, language modeling based on LSTMs
networks have become the dominant approach, providing the
best results so far in many ASR tasks [4]. While these models
are commonly used as part of the rescoring process using the
n-best hypothesis or lattices [5, 6, 7], there is an increasing in-
terest in providing an efficient way to integrate LSTM-based
language models (LMs) into the decoding process, thus en-
abling their use in streaming ASR. Indeed, many approaches
have been proposed in this regard, such as converting recur-
rent models into n-grams [8], using cache strategies [9], and
reducing the computational complexity of the Softmax func-
tion [10]. It is worth noting, however, that these approaches
were only focused on language modeling, that is, the decod-
ing problem was not considered as a whole for (low-latency)
streaming.

Recently, we proposed the use of LSTM-based LMs in
the first pass of the decoding process, without any approxi-
mation or transformation in [11]. This is achieved by keep-
ing the state of the LSTM LM network as part of the search
structure, along with the Variance Regularization term [10]
used to reduce the Softmax computational complexity. This
allowed us to achieve a competitive performance while keep-
ing the real time factor (RTF) below one. In this way, we
paved the way to the use of LSTM LMs in a streaming setup,
in which tight real-time constraints and low latency are criti-
cal. This is done in this work, that is, we extend the one-pass



decoding approach described in [11] by using LSTM LMs
in a streaming setup. As in [3], acoustic modeling is based
on BLSTMs, though in this work important requirements for
streaming ASR are also considered, such as the normaliza-
tion of the input features or the system architecture. More
generally, this work can be seen as a thorough study of the
effect that moving from an off-line to a streaming setup has
on WER. It is shown that it highly depends on the feature
normalization context and the availability of future acoustic
context. In addition, given the tight real-time constraints of
the streaming setup, detailed results on time latency are re-
ported on reference tasks widely used in the literature such as
LibriSpeech [12] and TED-LIUM [13].

2. STREAMING DECODER

2.1. One-pass decoder review

We followed the decoder structure proposed in [11]. The main
aspects of this decoder will be commented briefly in this sec-
tion. In this decoder, the hypothesis are organized by their
history, in a similar way as it is done in [14]. Therefore, the
computation of the lookahead score should be carried out dy-
namically during decoding, involving several queries to the
language model. To reduce the impact of that, in this ap-
proach it is proposed the use of the static lookahead tables, a
structure that is precomputed in advance, providing the looka-
head score efficiently during decoding. This structure is ob-
tained from a pruned n-gram model, enabling the use of less
memory during recognition.

On the other hand, when a word-end node is reached, we
replaced the score that we got so far by the score from the
LSTM LM. In order to compute this efficiently, we used the
Variance Regularization term as a self-normalized function,
avoiding the computation of the whole Softmax [10]. Along
with this function, we followed a lazy strategy, when a lan-
guage model node is created, to postpone the computation of
the LM score as much as possible. A more detailed descrip-
tion of these steps can be found in [11].

We included two additional parameters in this one-pass
decoder to control the WER/RTF trade-off: the Language
Model Histogram Recombination (LMHR) and the Language
Model Histogram Pruning (LMHP). The LMHR controls the
size of the previous history considered to combine two hy-
potheses. The LMHP limits the number of new LM histories
to be expanded, and thus the number of queries to the LSTM
LM. As shown in [11], these parameters are really effective
to reduce the RTF while keeping a good WER performance.

2.2. Streaming adaptation

Under streaming conditions, we cannot see the complete con-
text for a given frame. Therefore, when using BLSTM net-
works for acoustic modeling, we have to assume a delay be-
tween the input and the output, that allows us to consider this

temporal gap as a short-term context in order to obtain the
acoustic score. In order to work with this acoustic lookahead,
we have followed a similar strategy to [3]. It is based on the
use of a sliding window over the sequence, where for each
frame, we have a context of the nlookahead following seconds.
These seconds, or equivalently, frames, were used in order
to compute the forward and the backward steps over the se-
quence, obtaining a score for each frame within the window,
using a BLSTM network as in [2]. We have done this frame
by frame, meaning that there will be an overlap equal to the
size of the window. Regarding the overlapping frames, we
used a uniform weighted average of the acoustic scores to ob-
tain the final score that will be provided to the decoder. In the
extreme cases where the utterance is shorter than the window
or the window goes beyond the sequence, we introduced zero
padding up to the length of the window.

Regarding normalization of the features, we have in-
cluded an initial delay that will be used to gather statistics to
initialize the mean and the variance. We have a parameter,
nnorm, that indicates the number of seconds that will be used
to compute the statistics. Once these nnorm seconds have
been accumulated, the normalization will be applied from the
first frame to the last delayed frame, and then the recognition
starts updating mean and variance frame by frame without
including any additional delay. There is, indeed, an initial
latency to obtain the first result from the decoder of nnorm
seconds. However, in a real streaming setup, if this initial
delay is small, it will not harm the global latency nor the
performance of the system.

Our streaming setup follows a client-server architecture,
where the server can process different requests at the same
time. In order to manage that, in the server side, we have
a pool of recognizers that will be paired with clients, serv-
ing requests in a separated way, while the recognizers share
the same models, reducing the required CPU and GPU mem-
ory. This allowed us to accommodate different systems at the
same time. This architecture is used in our TTP platform1,
currently available under registration, in English, Spanish and
Catalan, and in the PoliSubs service2 provided by the Univer-
sitat Politècnica de València.

3. EXPERIMENTS

3.1. Experimental setup

Table 1 provides some basic statistics of the corpora used to
assess our approach: the LibriSpeech ASR corpus [12], and
the third version of the TED-LIUM corpus [13]. Regarding
the vocabulary, we have used the provided 200K words for
LibriSpeech, and for TED-LIUM’s we have selected 153K
words. Regarding the partitions, we have used the *-other for
LibriSpeech and the *-legacy ones for TED-LIUM.

1https://ttp.mllp.upv.es/
2https://apps.upv.es/ - https://polisubs.upv.es/
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Table 1. Statistics of the corpora.
LibriSpeech TED-LIUM

Dur.(h) Words Dur.(h) Words
Train 961 884M 452 258M
Dev 5.3 50K 1.59 17K
Test 5.1 52K 2.61 27K

Following the hybrid approach [15], we trained a context-
dependent feed-forward DNN-HMM with three left-to-right
states. We have obtained 8.3K and 10.8K tied states for Lib-
riSpeech and TED-LIUM respectively after applying a pho-
netic decision tree [16]. To train our systems we have used
the transLectures-UPV toolkit (TLK) [17].

We bootstrapped a bidirectional LSTM-HMM model us-
ing the previous DNN-HMM, as in [18]. For the BLSTM
model, we used both TLK and TensorFlow [19], and an ar-
chitecture of eight bidirectional hidden layers with 512 LSTM
cells per layer and direction. Following [18], we performed
chunking during training by considering a context to perform
back propagation through time to a window size of 50 frames.

On the language modeling side, we used n-grams and
LSTM LMs, combining them through linear interpolation.
Apart from the 4-gram model provided for LibriSpeech, we
trained a 4-gram Kneser-Ney smoothed LM for TED-LIUM,
using the same data as in [13] and SRILM [20]. We obtained
OOV ratios of 0.57% and 0.12% for LibriSpeech and TED-
LIUM, respectively, on the dev sets. To compute the static
lookahead tables, a pruned version of these n-gram models
was computed.

The CUED-RNNLM toolkit [21] was used to train LSTM
LMs. Noise Contrastive Estimation (NCE) criterion [22] was
used to train faster, and the normalization constant learnt from
training was used during recognition [23]. Based on the low-
est perplexity models on dev, we selected the final models
with 256-unit embedding layer and a hidden LSTM layer of
1024 units. Finally, the interpolation weights to combine the
n-gram and the LSTM LM were wngram = 0.15, wlstm =
0.85 for LibriSpeech and wngram = 0.22, wlstm = 0.78 for
TED-LIUM. Table 2 shows the perplexity on the dev parti-
tions of these LM.

Table 2. Perplexity results on development partitions.
LibriSpeech TED-LIUM

4-gram 140.6 125.8
LSTM LM 86.2 88.0

LSTM LM + 4-gram int. 83.7 78.7

It is worth noting that we used the same models and prun-
ing parameters for both the off-line and the streaming ap-
proach, in order to perform a fair comparison between the two
setups. We carried out the computations related to both acous-
tic and language models in GPU, whereas the decoder was run

in CPU, using a Intel Xeon(R) CPU E5-1620@3.50GHz with
a GTX1080Ti with 12GB.

3.2. Assessment of normalization and lookahead contexts

This section is to assess the impact of the context for nor-
malization (nnorm) and the impact of the lookahead context
(nlookahead) in terms of WER.

Table 3 shows the WER on the dev partition, for Lib-
riSpeech and TED-LIUM, as a function of nnorm (in secs.).
As discussed in Section 2.2, nnorm indicates the number of
seconds that the system is allowed to compute statistics for
feature normalization. For the results in this Table, we con-
sidered a value nlookahead = 0.5 seconds, which is the value
we used for chunking during training.

Table 3. Impact of normalization context on WER, on Lib-
riSpeech and TED-LIUM.

nnorm (sec) LibriSpeech TED-LIUM
0 15.6 9.7
1 11.0 8.2
2 10.0 8.1
4 9.6 7.9
8 9.4 7.7
∞ 9.4 7.6

From the results in Table 3, it is clear that normalization
helps in improving performance. As expected, the best WER
is achieved when the whole utterance is considered. Indeed,
broadly speaking, with more information, the mean and vari-
ance are estimated better. However, it goes without saying
an optimal value for nnorm should be in between extreme val-
ues. On our experience, an appropriate value for this param-
eter could be around 2 seconds. To us, this value is a sort of
minimum for the system to collect meaningful statistics and
respond after a reasonable waiting time.

Once this initial delay for the normalization is fixed to 2
seconds, we have performed an analysis of the impact on the
WER of the parameter nlookahead, which indicates the num-
ber of seconds of acoustic lookahead. Table 4 summarizes
the results for these experiments, with the WER obtained for
each corpus considering {0.125, 0.25, 0.5, 1, 2} seconds of
nlookahead.

Table 4. Impact of lookahead context on LibriSpeech and
TED-LIUM on WER.

nlookahead (sec) LibriSpeech TED-LIUM
0.125 17.1 10.5
0.250 11.6 8.8
0.500 10.0 8.1
1.000 9.9 7.9
2.000 10.2 7.8



Results shown that the best WER is obtained with a 1
second and 2 seconds window length for LibriSpeech and
TED-LIUM, respectively. While for TED-LIUM using the
biggest considered size helped the performance, there is a
degradation on WER for LibriSpeech, which could be due to
the additional padding that we had to introduce for the small
segments, very common in this dataset. In addition, results
shown that there is an important gap in performance when us-
ing more than 0.250 seconds to compute the acoustic score, as
a WER improvement of ∼ 14% and ∼ 8% could be achieved
using 0.5 seconds to compute the sliding window, for Lib-
riSpeech and TED-LIUM, respectively.

3.3. Latency assessment

Table 5 shows the average latency for LibriSpeech and TED-
LIUM, as a function of nlookahead and nnorm. Here, latency
refers to time elapsed between the end of the current hypoth-
esis and the point in time at which it is actually delivered.
So, for instance, if a hypothesis is delivered 2 seconds after
its (acoustic) end, then the latency is 2 seconds. In contrast to
Table 4, where WER is studied as a function of nlookahead, here
we focus on the average latency as a function of nlookahead and
two values for nnorm, 2 and 0 seconds, with 0 seconds mean-
ing that no time is devoted to gather statistics before recogni-
tion starts. While the setup with nnorm = 2′′ was the one that
we used to compute the WER in the previous Section, the re-
sults with nnorm = 0′′ reflects the case in which sequences
are long enough for normalization not to harm the global la-
tency. Clearly, this gives an idea of how the decoder behaves
in a real streaming setup. It is worth noting that these mea-
surements were taken in the server side, not considering the
network latency.

Table 5. Impact of lookahead context on LibriSpeech and
TED-LIUM on the latency (nl = nlookahead, nn = nnorm).

LibriSpeech TED-LIUM
nl (sec) nn = 2′′ nn = 0′′ nn = 2′′ nn = 0′′

0.125 1.8 ± 0.5 0.6 ± 0.3 0.7 ± 0.5 0.3 ± 0.1
0.250 1.7 ± 0.5 0.6 ± 0.2 0.8 ± 0.4 0.5 ± 0.1
0.500 1.6 ± 0.5 0.8 ± 0.2 0.9 ± 0.3 0.8 ± 0.1
1.000 2.2 ± 0.5 1.4 ± 0.2 1.4 ± 0.2 1.3 ± 0.1
2.000 2.6 ± 0.6 2.9 ± 0.7 2.4 ± 0.3 2.3 ± 0.3

As can be seen in Table 5, the results for TED-LIUM are
really good. In the TED-LIUM task, we get small latencies
for both nnorm = 0′′ and nnorm = 2′′, up to nlookahead =
0.5, from which we get reasonable WER figures. In the Lib-
riSpeech ask, however, a slight degradation of the average la-
tency is observed, especially for nnorm = 2′′. This is to the
relative shorter in LibriSpeech (∼6.5 seconds), as compared
to TED-LIUM (∼11.3 seconds), which results in the decoder
not being able to fully recover from the initial delay. If we
restrict ourselves to the realistic case of nnorm = 0′′ , then we

can conclude that a good value for nlookahead is 0.5 seconds,
which leads to a latency ∼ 1 second and a competitive WER
in LibriSpeech and TED-LIUM.

3.4. Off-line/Streaming comparison

With the values set for nnorm = 2 seconds and nlookahead = 0.5
seconds, that involves a latency of ∼0.8 seconds, we have
performed a final comparison between the off-line and the
streaming systems, considering the test partitions. Table 6
shows these results, reflecting how we can provide an stream-
ing decoder with a similar performance in terms of WER,
working with a low-latency setup.

Table 6. WER results on test sets for LibriSpeech and TED-
LIUM.

LibriSpeech TED-LIUM
Off-line setup 10.2 8.2

Streaming setup 10.7 8.7

4. CONCLUSIONS AND FUTURE WORK

In this work we materialized the streaming decoder that was
proposed in [11], using LSTM-based models for the acoustic
and language modeling. We studied the impact of the nor-
malization during the on-line decoding, as well as the impact
of the acoustic future context in the WER and the latency.
We obtained a system that provides a similar performance in
terms of WER but working in a full streaming setup, with
a latency of ∼1 second. We evaluated our approach in Lib-
riSpeech and TED-LIUM, obtaining a competitive WER un-
der a streaming regime.

As future work, we want to study the impact of using the
same nlookahead window for training and decoding. Addition-
ally, we want to consider alternative approaches for dealing
with the limited future context, for example, considering all
the past context or using faster models such as feed forward
neural networks for the future context.
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Ferrer, J Civera, A Sanchis, and A Juan, “The
translectures-UPV toolkit,” in Advances in Speech
and Language Technologies for Iberian Languages, pp.
269–278. Nov. 2014.

[18] A. Zeyer, P. Doetsch, P. Voigtlaender, R. Schlüter, and
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